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BACKGROUND AND MOTIVATION

• Nowadays, we have effective tools to assess the

performance of large complex three-

dimensional structures under a variety of natural

and anthropic hazards.
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• Why should we (still) study the 

response of masonry arches to 

support displacements?
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BACKGROUND AND MOTIVATION

• Masonry arches are widespread in cultural heritage buildings and play a primary role in their structural

response.
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BACKGROUND AND MOTIVATION

• Large support displacements are a major threat to the stability of arches and may cause severe damage

and large deformations.
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Protecting the Cultural Heritage from

water-soil interaction related threats

PRIN PERICLES Project 

2015

Ferrero C, Cambiaggi L, Vecchiattini R, Calderini C. (2021) Damage assessment of historic masonry churches exposed to slow-moving. International Journal of Architectural Heritage, 15(8): 1170-1195.

• 58.1% of the 

territory 

affected by 

landslides

BACKGROUND AND MOTIVATION

Landslide susceptibility (2018)

Liguria region, Italy
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• Vulnerability of masonry arches to slow-moving landslides

Damage grade: 1 – negligible to slight damage; 2 – moderate damage; 3- substantial to heavy damage; 4 – very heavy damage; 5- destruction 
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Inclined displacements

Ochsendorf, 2006; Romano and Ochsendorf, 2010; Romano, 2005; Galassi et al., 2018; Zampieri et al., 2018; Smars, 2010; Masciotta et al., 2020 

Horizontal displacements Vertical displacements

BACKGROUND AND MOTIVATION

• Lack of detailed studies dealing with inclined support displacements
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Galassi et al., 2018

Rigid-no tension models

complying with Heyman’s
assumptions of Limit Analysis:

• infinite compressive strength

• zero tensile strength

• no sliding failure Heyman J., 1995

BACKGROUND AND MOTIVATION

• Difficulty in correctly assessing the structural safety of masonry arches on moving supports by using

analytical/numerical models

Coccia et al., 2015

Ferrero et al., 2021
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Galassi et al., 2018

Galassi et al., 2018
c = 41.7 mm c = 48.5 mm

Rigid-no tension models

complying with Heyman’s
assumptions of Limit Analysis:

• infinite compressive strength

• zero tensile strength

• no sliding failure Heyman J., 1995

Overestimation of the ultimate

displacement capacity obtained

experimentally

BACKGROUND AND MOTIVATION

• Difficulty in correctly assessing the structural safety of masonry arches on moving supports by using

analytical/numerical models

Coccia et al., 2015

Ferrero et al., 2021
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OBJECTIVES AND METHODOLOGY
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• To provide a full understanding of the response of masonry arches to inclined support

displacements.

• To understand why rigid-no tension models fail in accurately predicting the actual response of

dry-joint masonry arches to large support displacements.

• To propose a numerical modelling approach able to obtain a better matching between

experimental and numerical responses.

• Experimental tests on a small-scale dry-joint masonry arch subjected to vertical, horizontal and

inclined support displacements

• Numerical simulations of the experimental tests adopting a finite element micro-modelling

approachM
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EXPERIMENTAL TESTS

• Physical model

E

 [MPa]


c
 

[MPa]

Φ
[°]


[kg/m3]

941 9.1 41.2 1640
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EXPERIMENTAL TESTS

• Application of support displacements

13 combinations of vertical and 

horizontal support displacements 
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EXPERIMENTAL TESTS

• Collapse mechanisms and modes of evolution of the hinge configuration

Initial sequence: I-E-E Initial sequence: I-E-E

Final sequence: E-I-E-E Final sequence: E-I-E-I Final sequence: E-I-E-I/E-I-E-I-E
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EXPERIMENTAL TESTS

• Collapse displacements and limit displacement domain

Horizontal collapse displacement vs. 

Vertical collapse displacement vs. 
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EXPERIMENTAL TESTS

• Collapse displacements and limit displacement domain

Mode I

Mode III

Limit displacement domain
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Horizontal collapse displacement vs. 

Vertical collapse displacement vs. 



EXPERIMENTAL TESTS

• Graphic statics

 = 0°-15°  = 20°-30°

 = 35°-75°  = 90°
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NUMERICAL SIMULATIONS

• Nonlinear static analyses (geometrical nonlinearities)

• FE micro-modelling (commercial software Diana FEA)

• Linear elasticity for the voussoirs

• Coulomb friction model with zero tensile strength for the

interfaces

• , E and  taken equal to the values measured experimentally

Interfaces
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NUMERICAL SIMULATIONS

• Sensitivity analysis to the interface stiffness for α = 0°

- kn varied between 1 and 100 N/mm3

- ks set equal to 0.5kn

16



NUMERICAL SIMULATIONS

• Sensitivity analysis to the interface stiffness for α = 0°

- kn varied between 1 and 100 N/mm3

- ks set equal to 0.5kn

Collapse mechanism vs kn

kn = 0.1 N/mm3 kn = 1 N/mm3

kn = 10 N/mm3 kn = 100 N/mm3
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NUMERICAL SIMULATIONS

• Sensitivity analysis to the interface stiffness for α = 0°

Collapse displacement 

z,u/L vs kn

Hinge position at 

collapse vs kn

48
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NUMERICAL SIMULATIONS

• Sensitivity analysis to the interface stiffness for α = 0°

Collapse displacement 

z,u/L vs kn

Hinge position at 

collapse vs kn

48

Rigid no-tension arch for 

kn = 48100 N/mm3
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NUMERICAL SIMULATIONS

• Sensitivity analysis to the interface stiffness for α = 0°

Exp

Exp

Collapse displacement 

z,u/L vs kn

Hinge position at 

collapse vs kn

48

kn should be decreased to better simulate the 

experimental results

Roughness

The contact surfaces of the physical model are 

not rigid

JOINT DEFORMABILITY

Not perfect coplanarity
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NUMERICAL SIMULATIONS

• Sensitivity analysis to the interface stiffness for α = 0°

Exp

Exp

Collapse displacement 

z,u/L vs kn

Hinge position at 

collapse vs kn

48

kn should be decreased to better simulate the 

experimental results

The contact surfaces of the physical model are 

not rigid

JOINT DEFORMABILITY

teff               

Corner roundingVariations in the block 

dimension

teff               

17



NUMERICAL VS. EXPERIMENTAL RESULTS

• Rigid (k
n

= 48 N/mm3) vs deformable interfaces (k
n

= 3 N/mm3) for α = 0°÷90°
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NUMERICAL VS. EXPERIMENTAL RESULTS

• Rigid (k
n

= 48 N/mm3) vs deformable interfaces (k
n

= 3 N/mm3) for α = 0°÷90°

Limit displacement domain
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NUMERICAL VS. EXPERIMENTAL RESULTS

• Rigid (k
n

= 48 N/mm3) vs deformable interfaces (k
n

= 3 N/mm3) for α = 0°

z,u/L = 16.5 %

z,u/L = 16.5 %z,u/L = 21.1 %

kn = 48 N/mm3 kn = 3 N/mm3
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NUMERICAL VS. EXPERIMENTAL RESULTS
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CONCLUSIONS

• The direction of imposed displacements significantly influences the response of masonry arches in terms

of collapse mechanism, evolution of the hinge configuration and ultimate displacement capacity.

• Dry-joint masonry arches may not behave as rigid-no tension structures due to the imperfections and

deformability of the joints.

• The deformability of the joints significantly affects the collapse displacement and hinge position at

collapse, while it has little influence on the collapse mechanisms. This explains why rigid no-tension models

are able to capture the actual collapse mechanisms, but they overestimate the ultimate displacement

capacity.

• Joint imperfections and deformability can be included in the numerical models by reducing the interface

normal stiffness with respect to the value adopted to simulate rigid interfaces.

• Calibrating the interface normal stiffness based on the experimental results is an effective strategy to

accurately simulate the experimental response.
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FUTURE WORK

• In-depth investigation on the effect of joint deformability and imperfections by analyzing:

✓ arches with different geometries, shapes and materials

✓ arches subjected to different types of loading (e.g., horizontal actions and points loads)

✓ arches with mortar joints

✓ full-scale arches

• Definition of damage states for the safety assessment of masonry arches subjected to large support

displacements
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